Part Number Hot Search : 
384206 AMS42107 N10NG BZX85C20 1N5256B 1N4131 W561S25 W561S25
Product Description
Full Text Search
 

To Download TLWTG8600 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  tlwb / bg / r / tg / y8600 document number 83168 rev. 1.9, 14-jan-05 vishay semiconductors www.vishay.com 1 19232 e3 pb pb-free telux? description the telux? series is a clear, non diffused led for applications where supreme luminous flux is required. it is designed in an industry standard 7.62 mm square package utilizing highly de veloped (as) allngap technology. the supreme heat dissipation of telux? allows applications at high ambient temperatures. all packing units are binned for luminous flux, forward voltage and color to achieve the most homogenous light appearance in application. sae and ece color requir ements for automobile application are available for color red. esd resistivity 2kv (hbm ) according to mil std 883d, method 3015.7. features  utilizing one of the worl d?s brightest (as) allngap technologies  high luminous flux  supreme heat dissipation: r thjp is 90 k/w  high operating temperature: t amb = - 40 to + 110 c  meets sae and ece colo r requiremen ts for the automobile industry for color red  packed in tubes for automatic insertion  luminous flux, forward voltage and color categorized for each tube  small mechanical tolerances allow precise usage of external reflectors or lightguides  lead-free device applications exterior lighting dashboard illumination tail-, stop - and turn signals of motor vehicles replaces small incandescent lamps traffic signals and signs parts table part color, luminous intensity angle of half intensity ( ? ) technology tlwr8600 red, v = 3000 mlm (typ.) 30 allngap on gaas tlwy8600 yellow, v = 3000 mlm (typ.) 30 allngap on gaas TLWTG8600 true green, v = 3000 mlm (typ.) 30 ingan on sic tlwbg8600 blue green, v = 1300 mlm (typ.) 30 ingan on sic tlwb8600 blue, v = 650 mlm (typ.) 30 ingan on sic
www.vishay.com 2 document number 83168 rev. 1.9, 14-jan-05 tlwb / bg / r / tg / y8600 vishay semiconductors absolute maximum ratings t amb = 25 c, unless otherwise specified tlwr8600 , tlwy8600 , TLWTG8600 , tlwbg8600 , tlwb8600 optical and electrical characteristics t amb = 25 c, unless otherwise specified red tlwr8600 parameter test condition symbol value unit reverse voltage i r = 100 av r 10 v dc forward current t amb 85 c i f 70 ma surge forward current t p 10 si fsm 1a power dissipation t amb 85 c p v 187 mw junction temperature t j 125 c operating temperature range t amb - 40 to + 110 c storage temperature range t stg - 55 to + 110 c soldering temperature t 5 s, 1.5 mm from body preheat temperature 100 c/ 30 sec. t sd 260 c thermal resistance junction/ ambient with cathode heatsink of 70 mm 2 r thja 200 k/w parameter test condition symbol value unit reverse voltage i r = 10 av r 5v dc forward current t amb 50 c i f 50 ma surge forward current t p 10 si fsm 0.1 a power dissipation t amb 50 c p v 230 mw junction temperature t j 100 c operating temperature range t amb - 40 to + 100 c storage temperature range t stg - 55 to + 100 c soldering temperature t 5 s, 1.5 mm from body preheat temperature 100 c/ 30 sec. t sd 260 c thermal resistance junction/ ambient with cathode heatsink of 70 mm 2 r thja 200 k/w thermal resistance junction/pin r thjp 90 k/w parameter test condition symbol min ty p. max unit total flux i f = 70 ma, r thja = 200 k/w v 2000 3000 mlm luminous intensity/total flux i f = 70 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 70 ma, r thja = 200 k/w d 611 615 634 nm peak wavelength i f = 70 ma, r thja = 200 k/w p 624 nm angle of half intensity i f = 70 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 0.9v 75 deg forward voltage i f = 70 ma, r thja = 200 k/w v f 1.83 2.2 2.67 v reverse voltage i r = 10 av r 10 20 v junction capacitance v r = 0, f = 1 mhz c j 17 pf
tlwb / bg / r / tg / y8600 document number 83168 rev. 1.9, 14-jan-05 vishay semiconductors www.vishay.com 3 yellow tlwy8600 true green TLWTG8600 blue green tlwbg8600 parameter test condition symbol min ty p. max unit total flux i f = 70 ma, r thja = 200 k/w v 2000 3000 mlm luminous intensity/total flux i f = 70 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 70 ma, r thja = 200 k/w d 585 590 597 nm peak wavelength i f = 70 ma, r thja = 200 k/w p 594 nm angle of half intensity i f = 70 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 0.9v 75 deg forward voltage i f = 70 ma, r thja = 200 k/w v f 1.83 2.1 2.67 v reverse voltage i r = 10 av r 10 15 v junction capacitance v r = 0, f = 1 mhz c j 17 pf parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 1000 2000 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 509 523 535 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 518 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.4 5.0 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.02 nm/k parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 630 1300 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 492 505 510 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 503 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.4 5.0 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.02 nm/k
www.vishay.com 4 document number 83168 rev. 1.9, 14-jan-05 tlwb / bg / r / tg / y8600 vishay semiconductors blue tlwb8600 typical characteri stics (tamb = 25 c unless otherwise specified) parameter test condition symbol min ty p. max unit total flux i f = 50 ma, r thja = 200 k/w v 320 650 mlm luminous intensity/total flux i f = 50 ma, r thja = 200 k/w i v / v 0.8 mcd/mlm dominant wavelength i f = 50 ma, r thja = 200 k/w d 462 470 476 nm peak wavelength i f = 50 ma, r thja = 200 k/w p 460 nm angle of half intensity i f = 50 ma, r thja = 200 k/w ? 30 deg total included angle 90 % of total flux captured ? 75 deg forward voltage i f = 50 ma, r thja = 200 k/w v f 4.4 5.0 v reverse voltage i r = 10 av r 510 v junction capacitance v r = 0, f = 1 mhz c j 50 pf temperature coefficient of dom i f = 30 ma tc dom 0.03 nm/k figure 1. power dissipation vs. ambient temperature figure 2. forward current vs. ambient temperature 0 25 50 75 100 125 150 175 200 0 20406080100120 t amb ? ambient temperature ( c) 18018 p - power dissipation ( mw ) v r thja = 200 k/w red, yellow 0 20 40 60 80 100 0 20406080100120 t amb - ambient t emperature ( c) 18019 i - forward current ( ma ) f r thja = 200 k/w red, yellow figure 3.forwardcurrentvs.pulselength figure 4.rel.luminousintensityvs.angulardi splacement for60 emissionangle 0.01 0.1 1 10 1 10 100 1000 10000 t p C pulse length ( ms ) 100 18020 i C forward current ( ma ) f t p /t = 0.01 0.02 0.05 0.1 0.2 1 0.5 red, yellow t amb 85 c 16006 0.4 0.2 0 0.2 0.4 0.6 0.6 0.9 0 30 10 20 40 50 60 70 80 1.0 0.8 0.7 i C relative luminous intensity v rel
tlwb / bg / r / tg / y8600 document number 83168 rev. 1.9, 14-jan-05 vishay semiconductors www.vishay.com 5 figure 5. percentage total luminous flux vs. total included angle for 60 emission angle figure 6. thermal resistance junction ambient vs. cathode padsize figure 7. forward current vs. forward voltage 0 10 20 30 40 50 60 70 80 90 100 0 25 50 75 100 125 total included angle (degrees) 16005 % total luminous flux r in k/w 160 170 180 190 200 210 220 230 0 50 100 150 200 250 300 cathode padsize in mm 2 16009 thja padsize 8 mm 2 per anode pin 0 10 20 30 40 50 60 70 80 90 100 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 v f C forward voltag e(v) 15974 f i Cf orward current ( ma ) red yellow figure 8.rel.luminousfluxvs.ambienttemperature figure 9.specificluminous fluxvs.forwardcurrent figure 10.relativeluminous fluxvs.forwardcurrent 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -40 -20 0 20 40 60 80 100 t amb C ambient temperature ( c) 18021 i f =70ma red v rel C relative luminous flux 0.1 1.0 1 10 100 i f - forward current ( ma ) 18022 i - specific luninous flux spec red 0.01 0.1 1 10 1 10 100 i f - forward current ( ma ) 15978 i - relative luminous intensity vrel red
www.vishay.com 6 document number 83168 rev. 1.9, 14-jan-05 tlwb / bg / r / tg / y8600 vishay semiconductors figure 11. relative intensity vs. wavelength figure 12. forward current vs. forward voltage figure 13. rel. luminous flux vs. ambient temperature 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 570 580 590 600 610 620 630 640 650 660 670 - wavelength ( nm ) 16007 i - relative luminous intensity vrel red 0 10 20 30 40 50 60 70 80 90 100 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 v f C forward voltag e(v) 15975 f i - forward current ( ma ) yellow 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -40 -20 0 20 40 60 80 100 15977 i f =70ma yellow v rel C relative luminous flux t amb C ambient temperature ( c) figure 14. specific luminous flux vs. forward current figure 15. relative luminous flux vs. forward current figure 16. relative intensity vs. wavelength 0.1 1.0 1 10 100 i f - forward current ( ma ) 15981 yellow i - specific luninous flux spec v rel 0.01 0.1 1 10 1 10 100 i f - forward current ( ma ) 15979 yellow i - relative luminous intensity 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 540 550 560 570 580 590 600 610 620 630 640 - wavelength ( nm ) 16008 i - relative luminous intensity vrel yellow
tlwb / bg / r / tg / y8600 document number 83168 rev. 1.9, 14-jan-05 vishay semiconductors www.vishay.com 7 figure 17. forward current vs. forward voltage figure 18. rel. luminous flux vs. ambient temperature figure 19. specific luminous flux vs. forward current 0 10 20 30 40 50 60 70 80 90 100 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v f - forward curren t(v) 16037 true green i f - forward current ( ma ) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 16056 i f =50ma true green v rel C relative luminous flux t amb C ambient temperature ( c) -40 -20 0 20 40 60 80 100 0.1 1.0 1 10 100 i f - forward current ( ma ) 16038 i - specific luminous flux spec true green figure 20.relativeluminous fluxvs.forwardcurrent figure 21.relativeintensityvs.wavelength figure 22.dominantwavelengthvs.forwardcurrent 0.01 0.10 1.00 10.00 1 10 100 i f - forward current ( ma ) 16039 true green vrel i - relative luminous intensity 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 460 480 500 520 540 560 580 600 620 - wavelength ( nm ) 16068 i - relative luminous intensity vrel true green 521 523 525 527 529 531 533 535 537 539 541 i f - forward current ( ma ) 16301 dominant wavelength ( nm ) true green 01020304050
www.vishay.com 8 document number 83168 rev. 1.9, 14-jan-05 tlwb / bg / r / tg / y8600 vishay semiconductors figure 23. forward current vs. forward voltage figure 24. rel. luminous flux vs. ambient temperature figure 25. specific luminous flux vs. forward current 0 10 20 30 40 50 60 70 80 90 100 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v f - forward voltag e(v) 16058 f i - forward current ( ma ) blue green 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 -40 -20 0 20 40 60 80 100 16061 i f =50ma blue green vrel - relative luminous flux t amb ? ambient temperature ( c) 0.1 1.0 1 10 100 16059 blue green i - specific luninous flux spec i f - forward current ( ma ) figure 26.relativeluminousfluxvs.forwardcurrent figure 27.relativeintensityvs.wavelength figure 28.dominantwavelengthvs.forwardcurrent 0.01 0.10 1.00 10.00 1 10 100 16060 blue green i f - forward current ( ma ) i - relative luminous flux vrel 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 420 440 460 480 500 520 540 560 580 600 16070 i f =50ma blue green i - relative luminous intensity vrel - wavelength ( nm ) 502 503 504 505 506 507 508 509 510 511 16300 blue green dominant wavelength ( nm ) 50 40 30 20 10 0 i f - forward current ( ma )
tlwb / bg / r / tg / y8600 document number 83168 rev. 1.9, 14-jan-05 vishay semiconductors www.vishay.com 9 figure 29. forward current vs. forward voltage figure 30. rel. luminous flux vs. ambient temperature figure 31. specific luminous flux vs. forward current 0 10 20 30 40 50 60 70 80 90 100 2.5 3.0 3.5 4.0 4.5 5.0 5.5 v f - forward voltag e(v) 16040 blue truegreen i - forward current ( ma ) f 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 16057 i f =50ma blue vrel - relative luminous flux t amb - ambient temperature ( c) -40 -20 0 20 40 60 80 100 0.1 1.0 1 10 100 i f - forward current ( ma ) 16041 blue i - specific luninous flux spec figure 32.relativeluminous fluxvs.forwardcurrent figure 33.relativeintensityvs.wavelength figure 34.dominantwavelengthvs.forwardcurrent 0.01 0.10 1.00 10.00 1 10 100 i f - forward current ( ma ) 16042 blue vrel i - relative luminous intensity 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 400 420 440 460 480 500 520 540 560 - w avelength ( nm ) 16069 i - relative luminous intensity vrel blue 16299 469 470 471 472 473 blue dominant wavelength ( nm ) 50 40 30 20 10 0 i f - forward current ( ma )
www.vishay.com 10 document number 83168 rev. 1.9, 14-jan-05 tlwb / bg / r / tg / y8600 vishay semiconductors package dimensions in mm 16004
tlwb / bg / r / tg / y8600 document number 83168 rev. 1.9, 14-jan-05 vishay semiconductors www.vishay.com 11 ozone depleting subst ances policy statement it is the policy of vishay semiconductor gmbh to 1. meet all present and future national and international statutory requirements. 2. regularly and continuously improve the performanc e of our products, processes, distribution and operatingsystems with respect to their impact on the hea lth and safety of our empl oyees and the public, as well as their impact on the environment. it is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (odss). the montreal protocol (1987) and its london amendments (1990) intend to severely restrict the use of odss and forbid their use within the next ten years. various national and international initiatives are pressing for an earlier ban on these substances. vishay semiconductor gmbh has been able to use its policy of continuous improvements to eliminate the use of odss listed in the following documents. 1. annex a, b and list of transitional substances of the montreal protocol and the london amendments respectively 2. class i and ii ozone depleting substances in the cl ean air act amendments of 1990 by the environmental protection agency (epa) in the usa 3. council decision 88/540/eec and 91/690/eec annex a, b and c (transitional substances) respectively. vishay semiconductor gmbh can certify that our semi conductors are not manufactured with ozone depleting substances and do not contain such substances. we reserve the right to make changes to improve technical design and may do so without further notice. parameters can vary in different applications. all operating parameters must be validated for each customer application by the customer. should the buyer use vishay semiconductors products for any unintended or unauthorized application, the buyer shall indemnify vishay semiconductors against all claims, costs, damages, and expenses, arising out of , directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. vishay semiconductor gmbh, p.o.b. 3535, d-74025 heilbronn, germany telephone: 49 (0)7131 67 2831, fax number: 49 (0)7131 67 2423


▲Up To Search▲   

 
Price & Availability of TLWTG8600

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X